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ABSTRACT

Both primal and dual methods of linear programming consist of
relatively efficient ways of searching among certain sets of points
for one at which an extreme value of a linear form is attained. For
a given problem the primal search is applied to one set of points
and the dual search to another set. It is of interest to compare the
possible cardinalities of these sets for guidance as to which method
is preferable in various circumstances. Let n(d,n) and 7(d,n)
denote respectively the minimum and the maximum of the cardinality
of the set to which the primal search is applied, when the feasible
region is a d-dimensional polyhedron having n facets and reasonable
nondegeneracy conditions are satisfied. Let 6(d,n) and 4(d,n) be
similarly defined for dual searches. Various results on these num-
bers are obtained, leading in particular to the conjecture that

n(d,n) < A(d,n) when n > 2d, while [(d,n) > 4(d,n) when n < 2d.
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Setting of the problem

We are concerned with procedures for minimizing a linear form

¢o over a convex polyhedron P defined by a finite system of linear

inequalities say

P = {xeRd:¢l(X) < al.¢2(x) < az."'.¢n(X)

IA

an}.

where the @i's are linear forms on the d-dimensional real vector space
Rd. We assume the following nondegeneracy conditions, some of which are

inessential but make for a simpler discussion:

(1) P is of dimension d;
(2) the system of inequalities @i(x) < ay (1<i<n) 1is minimal with
respect to determining P;
(3) the linear form ¢o attains a minimum on Pj
(4) n>d; each set of d functions @i (0<i<n) 1is a linear basis
for Rd (regarded as self-dual in the usual way);
(5) no point lies on .. 'e than d of the hyperplanes

H = {x:ci(x) = ai}. l<i<n.

We do not assume P 1is bounded.

Under the conditions (1)-(5) it is true that each d ot the hyper-
planes Hi have a unique commoa point, the polyhedron P has exactly d
edges incident to each vertex, and the minimum of °o on P is attained

at a unique point of Rd which satisfies the following two conditions:



(6) it is the intersection of d hyperplanes Hk(l)’.."Hk(d)
which determine a point of P;
(7) it is the intersection of d hyperplanes Hk(l)"..'Hk(d)

LN J d
such that the set {¢o’¢k(l)’ ’¢k(d)} is a positive basis for R".

Condition (6) merely requires the point to be a vertex of P in
the usual geometric sense or, as we may say here for emphasis, a primal
vertex. A point satisfying condition (7) will be called a dual vertex
for the problem of minimizing ¢o on P. (In the figure below, the
dual vertices are denoted by w and the primal vertices by y; the
linear forms ¢i are represented by vectors orthogonal to their level
sets.) By a primal [resp. dual] method of linear programming we mean
any procedure which searches for the minimizing point among the primal
[resp. dual] vertices. (Primal methods are discussed in all treatments
of linear programming. Some of the better treatments of dual methods
ace those of Cheney & Goldstein [2], Dantzig [3], Hadley [11], Lemke [14]

and Wagner [16].) For each dual vertex w and primal vertex vy,
¢ (W) <min ¢ P < ¢ (y).

Thus the dual methods approach the minimizing value and vertex from

below, the primal methods from above.

n
Under our assumptions there are exactly (d) points of Rd which

are determined by the various sets of d hyperplanes H,, but of course
i
the number of primal vertices and the number of dual vertices will vary

with P and ¢°. It is of interest to estimate these numbers and to com-

pare them, for their relative magnitudes are helpful in deciding whether




Primai and dual vertices for a linear program.




a primal or a dual method is preferable for a given problem. Let

n(d,n) and I(d,n) denote respectively the minimum and the maximum

of the number of primal vertices, and let §(d,n) and A(d,n) denote
respectively the minimum and the maximum of the number of dual vertices,
these extrema being taken over all (n+l)- tuples (¢0,¢1,°--,¢n) of
linear forms on Rd which satisfy the nondegeneracy conditions (1)-(5).
By applying known methods and results concerning convex polyhedra we are

able to prove the following theorems.
THEOREM. n(d,n) = n-d+1; 8§(d,n) = 1.

THEOREM.

o [ -
(8) n(d,n) _>_< n-d )*( n-d >

©

with equality if d <8 or n <d#d or n 2 (d/2)" - 1.

n=-d+1 (n-d+2
("' l—:2'> (” e ])
(9) A(dyn) > d % d

with equality if d <3 or n < d8 or n < de2e2(2d+1),

It is conjectured that equality always holds in (8) and 9.

Corollary.

A

n(d,n) < A(d,n) =f n

v

2d and equality holds in (8).

n(d,n)

v

A(d,n) if n < 2d and equality holds in (9).

For a variety of reasons, these results would not lead to a clear

choice between primal and dual methods in practical problems, even if



equality were known in both (8) and (9). However, the cardinality of

the set in which a search is to be carried out is surely relevant to e
the difficulty of the search, and since the common procedures for primal

and dual methods are very similar in structure it seems the above com-

parisons should be useful.

1 am indebted to A.A. Goldstein and M. Perles for helpful comments.

The number of vertices of a simple polyhedron

Henceforth we assume d and n are integers with n>d>1. By
polyhedron we mean a subset of Rd which is the intersection of a
finite number of closed halfspaces; a polytope is a bounded polyhedron.
Dimensions are indicated by prefixes, and the O-faces, l-faces and
(d-1)-faces of a d-polyhedron are called respectively its vertices,
edges and facets. A polyhedron is said to be pointed provided it has
at least one vertex, and a d-polyhedron is gimple if it is pointed and
each of its vertices is on exactly d edges or, equivalently, on ex-
actly d facets. A polyhedron of class (d,n) 1is a pointed d-

polyhedron with exactly n facets.

The nondegeneracy conditions of the preceding section imply P is
a simple peolyhedron of class (d,n). Conversely, each simple poly-
hedron of class (d,n) can be deformed (by a slight displacement of its
facets) into a combinatorially equivalent polyhedron which satisfies the

nondegeneracy conditions. Hence m(d,n) and I(d,n) are respectively

i Yo
o BAEE

the minimum and the maximum number of vertices of simple polyhedra of




class (d,n). The stated lower bound for = was established by Gale [8],
who showed [9] that equality holds when n < d+3. Equality when

n > (d/2)2-1 was proved by Klee [12]. These results establish equality
when d < 6, extended to d < 8 by Griinbaum [10] using theorems of
Fieldhouse [6] and Kruskal [13]. This takes care of (8), and we want

next to show that m(d,n) = n-d+l. The corresponding problem for poly-
topes of class (d,n) is still open, although it may eventually be

settled by a proof of the following

Conjecture. For simple polytopes of class (d,n) the minimun

number of vertices is (d-1)n - (d-2)(d+l).

For d = 4 this was stated by Briickner [1] as a theorem, but Steinitz [15]
observed Briickner's proof was incorrect. The conjecture is obviously
correct (by Euler's theorem) for d < 3 and has been proved by Griinbaum
[10] for n < d+3. Although the general case is unsettled, we find it
convenient to define a minimal (d,n)-polytope as a simple polytope of

class (d,n) which has (d-1)n - (d-2)(d+l) vertices.

Lemma. For 1l<d<n there is a sequence of polytopes PLPL«+CP,

such that each P ig a minimal (j, n-d+j)-polytope and is u face of P

3 d’

Proof. For n = d+l1 let Pd be a d-simplex and let Pj be a
facet of Pj+1 for 2 < j < d. Then for fixed d proceed by induction

on r. Having constructed the desired sequence P2Y:P3T:~-<:Pd' for n-1,

1

choose a vertex x of P2 and a closed halfspace Q in the affine hull

of Pd' such that Q does not include x but all other vertices of Pd'

are interior to Q. Let Pj = PJ?WQ for 2 < j < d.
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A function f£ will be called a d-fold adjacency function for a

graph G provided the following three conditions are satisfied:

(10) the domain of f is the set V of all vertices of G;
(11) for each vertex v of G, f(v) is a set of cardinality d;
(12) whenever v and w are adjacent vertices of G there are

d-1 points common to the sets f(v) and f(w).

Lemma. If V 1is the set of all vertices of a connected graph G

and £ ie a d-fold adjacency function for G then
card Lxsvf(v) <card V+d - 1.

Proof. Use induction on card V, noting that the points of V
can be linearly ordered so that each is adjacent to at least one of its
predecessors. (This argument, due to M. Perles, is simpler than my

original proof.)

It would be of interest to sharpen the above inequality for various
restricted classes of connected graphs, in particular for the d-connected

d-valent graphs.

THEOREM. For simple polyhedra of class (d,n) the minimum number

of vertices is n-d+l.

Proof. Let us first construct a simple d-polyhedron P which
has n facets, all unbounded, and has n-d+l1 vertices. For this purpose
we appeal to the first lemma to obtain a minimal (d,n+l)-polytope P

d
having a minimal (d-1,n)-polytope Pd-l as one of its facets. We may

Tk
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assume Pd .is in Rd. Let P be the unbounded polyhedron obtained

from Pd by "removing" Pd-l; that is, P is the image of Pd under

a projective transformation which carries pd-l into the hyperplane at

infinity. Then P is a simple polyhedron of class (d,n) and since

(with the Pi's as constructed in the lemma) every facet of Pd inter-
sects Pd_1 it follows that every facet of P is unbounded. The ver-
tices of P correspond to vertices of Pd which are not in Pd-l’ and

the number of such vertices is
[(d-1) (n+1) - (d-2)(d+1)] - [(d-2)n - (d-3)d] = n-d+l.

To complete the proof, consider an arbitrary simple polyhedron P
of class (d,n). Let V denote the set of all vertices of P, and G
the graph formed by the vertices and bounded edges of P. That G is
connected is well-known and follows, for example, from a basic theorem
of linear programming. For each veV let f(v) denote the set of all
facets of P incident to v. Since P is a simple d-polyhedron, f
is a d-fold adjacency function for G, and since each facet is incident

to at least one vertex it follows from the second lemma that

n<card V +d - 1.

The number of positive bases contained in a Haar set

St < d
A positive basis for R is a subset B of Rd which positively

d
spans R~ and is positively independent; that is, each point of Rd is

a positive combination of points from B but no point p of B is a



positive combination of points from Bv{p}. A subset of Rd will be
called a Haar set provided it includes at least d points and each of
its d-pointed subsets is a linear basis for Rd. Any positive basis con-
tained in a Haar set is of cardinality d+1 and in fact is the set of
all vertices of a d-simplex whose interior includes the origin 0; con-
versely, each such set of vertices is both a positive basis and a Haar

set.

In addition to the dual methods of linear programming there are
algorithms for convex programming which deal with positive bases con-
tained in Haar sets (see Cheney & Goldstein [2] and some of their ref-
erences; also Descloux [5]). For each subset X of Rd let b(X) denote
the number of positive bases for Rd contained in X. Let mH(d,n)
and MH(d,n) denote respectively the minimum and the maximum of b(X)

as X ranges over all Haar sets of cardinality n which positively

span Rd.

THEOREM.

4

(13) mH(d,n) =n -d.

ol ln-—_u & In-d+1]
; 2 S 2
(14) MH(d,n) > d+1 d+1 e

with equality if d <2 or n <d# op n < drs+2(2ds3)"

It is conjectured that equality always holds in (14). The equality (13)
was proved by Cheney & Goldstein (§§13-14 of [2]) but is included here

for the sake of completeness.
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Proof. Let Y be a Haar set consisting of the d points of a
linear basis for Rd together with n-d strictly negative combinations

of these points. Tren mH(d,n) < b(Y) = n-d.

Now consider an arbitrary Haar set X consisting of n points
 SERLETE which positively span Rd, and let C denote the set of all
convex relations on X. That is, C 1is the set of all n-tuples

(Yl,"°,Yn) of real numbers satisfying the following conditions:
(15) Yy 5F 05 A =l e iR

ae) v, =1,

= 0,

n
X
(17) Elyi {

where of course the 0 in (17) is the origin of Rd. For k =1,2,3 let
Ci denote the set of all points (11."',yn) of R" which satisfy

condition (14 + i). Then Cl is the positive orthant of Rn, C, is

: n ]
a hyperplane in R {0}, and since Rd is linearly spanned by X the

. - n
set C3 is a linear subspace of deficiency d in R . Bv a theorenm

of Davis (3.6 of [4]) tne set X admits a strictly positive relation

and hence C includes an interior point of Cl' Since C = ClﬂC,)ﬂ(I3

we conclude C 1is an (n-d-1)-polytope whose facets are all of the form
Fi = {YEC:Yi = 0}. Recalling that X 1is a Haar set, we sec that C is

simple, and a set Fi is a facet of C if and only if F1 is nonempty.
From this or from another theorem of Davis (4.4 of (4], which applies to
arbitrary positively spanning sets) it follows that the vertices of C

are exactly the convex relations supported by the various positive bases

contained in X.
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Since C is a polytope of dimension n-d-1 it has at least n-d
vertices and thus X contains at least n-d positive bases. Hence
mu(d,n) = n-d. And since C has at most n facets it follows that

MH(d,n) < n(n-d-1,n).

e e e
G(d,n) = d+l a: d+1 .

a result stated earlier implies I(n-d-1,n) = G(d,n) if

With

(n-d—l)2
n-d-1 <8 or n £ (n-d-1) +3 or n 2 2 -1,

and these conditions are equivalent respectively to
n<d+t9, d <2, and n < d+3+2(2d+3)%.

To complete the proof it remains to show MH(d,n) > G(d,n)

that is, to construct a Haar set of cardinality n in Rd which con-
tains G(d,n) positive bases. This may be done by an inductive pro-
cedure similar to one used by Gale (Theorem III of [7]) for a closely
related purpose. Alternatively, from the existence of simple polytopes

of class (n-d-1,n) which have G(d,n) vertices (Gale [8]) it is possible
to arrive at the desired Haar set'by means of a correspondence employed

by Gale (p. 259 of [7]) and studied in more detail by M. Perles. (See

the disucssion of Gale-diagrams in [10]).
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The number of dual vertices

In §5§17-19 of [2] Cheney & Goldstein discuss an algorithm for
minimizing a polyhedral convex function ¢ over Rd, the function being

assumed to have the form

(18) p(x) = maxosisk(¢i(x) - ai)

where the ai's are constants and the set {¢o,-o-,¢k} is a Haar set
of linear forms positively spanning Rd. For this unconstrained minimum
problem their algorithm calls for a search in the set of positive bases
for Rd contained in {¢0,°-°,¢k}. Results of the preceding section are
of interest as estimates of the cardinality of this set. 1In §§23-24 of

[2] Cheney & Goldstein describe an algorithm for rinimizing y (as in

(18)) over a polyhedron {xeRd:¢(x) < 0}, where

$00) = B e’ ® %

and the set {¢o,"',¢ $k+l’...’¢n} is assumed to be a Haar set posi-

k)
; d

tively spanning R . Here the search is confined to the positive bases

which are contained in {¢O,"‘,bn} and include at least one of the

functions ¢ ,“’,@k. This suggests a study of numbers b(X,Y) where

o
Y is a subset of X and b(X,Y) is the number of positive bases which
intersect Y and are contained in X. For 1<d<n and 1<k<n let
m:(d,n) and Mﬁ(d,n) denote respectively the minimum and the maximum

of b(X,Y) as X ranges over all Haar sets of cardinality n which
positively span Rd and Y is a k-pointed subset of X. Of course
m:(d,n) = mH(d,n) and M:(d,n) = MH(d,n) for k2n - d. It can be veri-

fied also that m;(d,n+l) = 6(d,n) and M;(d,n+1) = A(d,n).



13

k <n

n-d for n-d
k for 1 <k <n-d

IA

THEOREM. mg(i,n) =
e
Proof. To see the claimed maximum is achieved when 1l<k<n-d,
let X be a Haar set consisting of the d points of a linear basis
for Rd together with n-d strictly negative combinations of these !
points, and let Y consist of k of these combinations. Then b(X,Y) = k. .
To see m;(d,n) >k when 1 < k < n-d, consider an arbitrary Haar set
}. Let the

X = {xl,...’xn} in Rd and its subset Y = {x e X

i
(n-d-1)-polytope C be defined as in the preceding section and let

k

F = {YeC:Yl = «{2=aoo =

Then F is a face of dimension < n-d-k-1 and hence C can be mapped
onto a k-polytope K by an affine transformation which carries F into
a single vertex of K. There are at least k additional vertices of K
and each of them is the image of at least one vertex of C. Thus C

has at least k vertices vy = (yl,---,yn) such that ' # 0 for some
i with 1l<i<k, and each such vertex corresponds to a positive basis

d z .
for R which intersects Y and is contained in X.

A special and obvious case of the theorem just proved is that

§(d,n) = 1.

For 1l<k<n-d our results on the numbers M:(d,n) are not very
satisfactory. However, the following result shows that A(dyn) = MH(d-l,n),
and in conjunction with the preceding section this justifies the estimate

given earlier for A(d,n).

»
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TEEOREM. Mili(d,n) = M (d-1,n-1).

Proof. To see that Mﬁ(d,n) > MH(d-l,n-l), let W be a Haar

set of cardinality n-1 in Rd_1 containing MH(d-l,n-l) positive bases.

With Rd-1 embedded in Rd as a hyperplane through the origin, choose

udeRd L Rd_1 and let

X = {w-u,:weW} k){ud}.

d

Then X 1is a Haar set and b(X, {ud}) = b(W).

To see that M;(d,n) < MH(d-l,n-l), consider an arbitrary Haar set
{x1,°°',xn} of cardinality n in Rd. Define C as previously and let
Fn = {yaC:yn =0}, If Fn is empty then X is not in the positive
span of {xl,---,xn_l} and there is a hyperplane Rd-1 through 0 which
strictly separates X from {xl,---,x

of Rd onto Rd—1 which carries X onto the origin, then {tx1,°".tx

n-1

is a Haar set in Rd.l with

b({xl,-'°,xn},{xn}) = b({txl,-°°,tx }) < Mn(d-l,n-l).

n-1

In the remaining case Fn is a facet of C. The number b({xl,"°,xn?
{xn}) is equal to the number of vertices of C which are not in Fl and
hence (considering a projective transformation which sends Fn into the
hyperplane at infinity) is equal to the number of vertices of a simple
(n-d-1)-polyhedron with at most n-1 facets. The maximum of such numbers

is IN(n-d-1,n-1) = MH(d-l,n-l).

Now that the stated estimates for 1(d,n) and 4(d,n) have been

established, only the comparison of the two numbers remains. Note first

}. If t is a linear projection

n-l’
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that the conjectured values for N(d,2d) and A(d,2d) are equal.
For n # 2d the details of the comparison depend on the parity of d

and n, but as the idea is the same for all four cases we discuss only

the case in which d 1is odd and n is even say d = 2j-1 and

n-d = 2k-1, so that n-2d = 2(k-j). We want to compare the numbers

(j+2k—2' k+23j-2
P(j,k) = 2k-1 ) and D(j,k) = ( 2j-1 ),

which are half the conjectured values for 17(d,n) and A(d,n) respectively.

Let

P(i,k) _ (j+2k-2)!(2§-1)!(k-1)!
D(j,k) (k+23-2)! (2k=-1) ! (3-1)!

R(j,k) =

Then R(j,j) =1,

RGLK  _ 2Qktct2i-1) . RGO _(lch2f) (k+2§-1)
R(j,k+1) (3+2k) (3+2k-1) R(3+1,k)  2(2j+1) (j*#2k-1) °

Thus

R(j,k) l_é I R k L5 0
R(i D L e wo o ,—ﬁ-'—)——R(jﬂ’k)<1 for j>5-2+1

If n>2d then k>j and

1 _ R4.D RE.GD . RGED
R(j,k) R(j,j+1) R(3,j+2) R(j,k) ’

whence P(j,k) < D(j,k). If n < 2d themn j > k and

1 _ _R(gk)  ROeHLK) | RG-1,0) _
R(j,K) ~ R(k+l,k) R(k+2,k)  R(j,K) L,

whence P(j,k) > D(j,k).

Gt 2k
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